

РП: S0040-4039(97)01498-6

Regioselectivity in the Reduction of Cyclic Enediones with NaBH4/CeCl3

Chunjian Liu and D. Jean Burnell*

Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada

Abstract: Reductions of cyclic enediones by sodium borohydride proceed with markedly different regiochemical preferences with and without cerium(III) chloride. In the presence of CeCl₃, reductions appear to be controlled by two phenomena: the accessibility toward axial addition, in common with reactions without CeCl₃, and accessibility for complexation by the Lewis acid. © 1997 Elsevier Science Ltd.

We recently showed that 1,2-reductions of cyclic enediones by NaBH₄ in methanol and Li(O-*t*-Bu)₃AlH in THF follow the same stereo- and regiochemical course.^{1,2} Reduction occurs by axial addition of hydride, and accessibility of the carbonyls then far outweighs electronic contributions in determining regioselectivity. The result is that reduction of the seemingly more hindered carbonyl can proceed stereospecifically in excellent yield. We report herein that in some instances regioselectivity can be effectively reversed by the use of NaBH₄/CeCl₃.³

The reaction of enedione 1 with NaBH₄/CeCl₃ in methanol at 0 °C proceeded^{4,5} with a regiochemical preference opposite to that of NaBH₄ without the CeCl₃, although over-reduction made this reaction synthetically unattractive.⁶ Nevertheless, in the presence of CeCl₃, NaBH₄ produced the monoalcohols **2** and **3** in a 3:1 ratio, respectively, whereas without CeCl₃ **2** and **3** were produced in a 1:5 ratio, respectively.¹

On the other hand, the reduction of enedione 4 proceeded in the same regiochemical sense with or without CeCl₃, yielding monoalcohol 5 in very good yield (regioselectivity \geq 95%). When the controlling features of enediones 1 and 4 were combined in enedione 6, a single monoalcohol product 7 was produced stereo- and regiospecifically with NaBH₄/CeCl₃. (NaBH₄ reduction of 6 without CeCl₃ gives 7 and another monoalcohol.¹) Opposition of the controlling features led to mixtures of three monoalcohols, but with a modest preference for products with regiochemistry opposite to that for NaBH₄ alone. With NaBH₄/CeCl₃, enedione 8 provided monoalcohols 9, 10, and 11 in a 1.7:1:1 ratio, respectively, with a regioselectivity of 73% in favor of reduction of the C-4 alcohol, but NaBH₄ alone had given only $11.^1$ Also, a 1:1 mixture of isomers 12 gave 13, 14, and 15 in a 1.7:1:1.2 ratio, respectively, and therefore 69% regioselectivity in favor of 13 and 14.

From the above reactions it is not clear how the addition of CeCl₃ enhances the role of the vinylic methyl, relative to reductions without CeCl₃ in which the electronic effect of this methyl was dominated by the steric influences from other regions of the substrate molecules.¹ It is known that the CeCl₃ behaves as a Lewis acid and complexes with the carbonyl oxygen to enhance 1,2-reduction over 1,4-reduction.⁷ Regioselectivity might reasonably be attributed to selective complexation, and the following examples suggest that this is determined by hindrance rather than a difference in basicity between the two carbonyls. In enedione 16, the region around the C-1 carbonyl is more encumbered than in 8 or 12, but the basicity of C-4 cannot be significantly different. However, monoreduction of 16 with NaBH₄/CeCl₃ was regiospecific, albeit with little stereoselectivity, giving epimers 17 and 18 in a 2.8:1 ratio. (A minor amount of over-reduced material was also obtained.) Similarly, reduction of the tetracyclic enedione 19 with NaBH₄/CeCl₃ yielded 20 and 21 (in a 1.5:1

ratio, but nevertheless with 100% regioselectivity) with no over-reduced product, whereas reduction at C-1 was the only reaction observed with NaBH₄ alone.¹

Conjugate and diol-forming reductions were not important processes with NaBH₄/CeCl₃, except with enedione 1. In general, by using approximately 0.7 molar equivalents of NaBH₄, very good yields of monoalcohol were obtained. In spite of the poor stereochemical control, which has been noted before in reductions with NaBH₄/CeCl₃,⁷ the regioselectivity afforded by this reductive process may still make this a useful alternative to other methods.

Financial support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

References and Notes

- 1 Liu, C.; Burnell, D. J. J. Org. Chem. 1997, 62, 3683-3687.
- Regioselectivity in the reactions of enediones toward lithium acetylide was previously examined by: Liotta, D.; Saindane, M.; Sunay, U.; Jamison, W. C. L.; Grossman, J.; Phillips, P. J. Org. Chem. 1985, 50, 3243-3245. For some examples of selectivity in synthetic applications: (a) Das, J.; Kubela, R.; MacAlpine, G. A.; Stojanac, Z.; Valenta, Z. Can. J. Chem. 1979, 57, 3308-3319. (b) Kienzle, F.; Stadlweiser, J.; Rank, W.; Schönholzer, P. Helv. Chim. Acta 1990, 73, 1108-1138. (c) Nampalli, S.; Bhide, R. S.; Nakai, H. Synth. Commun. 1992, 22, 1165-1177. (d) Khan, N.; Larsen, L.; Sutherland, J. K. Tetrahedron 1993, 49, 8233-8240.
- 3 The reduction of 4-oxoisophorone by NaBH₄/CeCl₃ was an isolated example reported by: Ishihara, M.; Tsuneya, T.; Shiota, H.; Shiga, M.; Nakatsu, K. J. Org. Chem. 1986, 51, 491-495.
- 4 Typical procedure: To a solution of 8 (0.177 g, 0.811 mmol) and CeCl₃·7H₂O (0.302 g, 0.811 mmol) in methanol (8.0 mL) at 0 °C was added NaBH₄ (22.3 mg, 0.560 mmol) in portions over 4 min. The mixture was stirred for 2 min before it was poured into 40 mL of a dilute NH₄Cl solution. This was extracted with ethyl acetate. The combined organic extracts were washed with H₂O and a saturated NaCl solution, then

dried over anhydrous MgSO₄ and concentrated under vacuum. Flash chromatography provided 9, 10, and 11 in a total yield of 90%.

5 For the physical and spectroscopic data for 1 - 8, 12, and 15 see reference 1.

Important characterization data for 9: colorless crystals, mp 67.5–69 °C; IR (Nujol) 3404, 1651 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 6.40 (1H, br s), 4.92 (1H, m, C-4H), 2.63 (1H, d, J = 17.1 Hz), 2.42 (1H, m, C-4aH), 1.79 (3H, t, J = 1.8 Hz), 1.62 (3H, br s), 1.56 (3H, br s), 1.18 (3H, s, C-8aMe, saturation gave 9% NOE at δ 4.92 and 5% at δ 2.42); ¹³C NMR (CDCl₃, 75 MHz, number of attached hydrogens from APT and/or heteronuclear correlation in parentheses) δ 202.2 (0), 142.4 (1), 133.7 (0), 124.3 (0), 123.2 (0), 67.7 (1), 46.2 (1), 45.9 (0), 39.8 (2), 29.2 (2), 24.2 (3), 18.8 (3), 18.7 (3), 16.0 (3).

10: viscous liquid; IR (film) 3434, 1658 cm⁻¹; ¹H NMR δ 6.59 (1H, br s), 4.26 (1H, m), 1.78 (3H, t, *J* = 1.7 Hz), 1.65 (3H, br s), 1.61 (3H, br s), 1.16 (3H, s); ¹³C NMR δ 203.4 (0), 146.1 (1), 132.7 (0), 123.9 (0), 122.2 (0), 67.4 (1), 47.7 (1), 44.5 (0), 37.5 (2), 29.9 (2), 20.0 (3), 19.1 (3), 18.9 (3), 16.1 (3).

Monoalcohols 13, 14, and 15 were each 1:1 isomers so the spectra were complex. For 13: ¹H NMR δ 6.41; for 14: ¹H NMR δ 6.59; for 15: ¹H NMR δ 5.88.

17: colorless oil; IR (film) 3454, 1682 cm⁻¹; ¹H NMR δ 6.31 (1H, narrow m), 5.25 (1H, narrow m), 4.80 (1H, m, C-4H), 2.75 (1H, m, C-4aH), 2.08 (1H, dd, J = 7.0, 18.5 Hz), 1.88 (1H, dd, J = 9.1, 18.5 Hz), 1.76 (3H, t, J = 2.0 Hz), 1.59 (3H, d, J = 0.8 Hz), 1.34 (3H, s), 1.23 (3H, s, C-8aMe, saturation gave 11% NOE at δ 4.80, 3% at δ 2.75, and 1.5% at δ 0.94), 0.94 (3H, s); ¹³C NMR δ 203.2 (0), 140.0 (1), 135.0 (0), 132.7 (1), 128.4 (0), 68.1 (1), 50.5 (0), 43.7 (1), 37.4 (0), 28.14 (2), 28.08 (3), 25.1 (3), 23.3 (3), 17.2 (3), 16.4 (3).

18: colorless solid, mp 89–91 °C; IR (CCl₄) 3465, 1664 cm⁻¹; ¹H NMR δ 6.60 (1H, br s), 5.07 (1H, br s), 4.32 (1H, m), 1.80 (3H, t, J = 2.1 Hz), 1.69 (3H, br s), 1.18 (3H, s), 0.91 (3H, s), 0.79 (3H, s); ¹³C NMR δ 202.6 (0), 145.9 (1), 136.7 (0), 131.5 (1), 127.2 (0), 68.0 (1), 50.2 (1), 48.4 (0), 36.3 (0), 28.9 (3), 27.8 (2), 26.5 (3), 23.7 (3), 21.7 (3), 16.3 (3).

20: white solid, mp 148.5–150 °C; IR (CCl₄) 3463, 1769, 1711, 1677 cm⁻¹; ¹H NMR δ 6.37 (1H, br s), 5.10 (1H, apparent q, J = 5.9 Hz), 4.96 (1H, m, C-4H, saturation gave 7% NOE at δ 6.60, 7% at δ 2.56, and 1% at δ 1.30), 3.32 (1H, apparent q, J = 6.8 Hz), 3.00 (1H, dd, J = 7.0, 18.0 Hz), 2.56 (1H, m, C-4aH), 1.75 (3H, dd, J = 1.6, 2.0 Hz), 1.31 (3H, d, J = 9.4 Hz), 1.30 (3H, s, C-8aMe), 0.89 (9H, s), 0.06 (3H, s), 0.04 (3H, s); ¹³C NMR δ 202.1 (0), 180.2 (0), 142.1 (1), 140.9 (0), 133.9 (0), 116.5 (0), 82.6 (1), 67.6 (1), 54.4 (1), 49.0 (1), 48.4 (0), 43.6 (1), 34.5 (2), 28.6 (2), 25.7 (3C, 3), 21.8 (3), 18.0 (0), 15.8 (3), 15.1 (3), -3.8 (3), -4.1 (3).

21: white solid, mp 150–151.5 °C; IR (CCl₄) 3456, 1770, 1710, 1667 cm⁻¹; ¹H NMR & 6.54 (1H, narrow m), 4.98 (1H, m), 4.24 (1H, m), 3.05 (1H, dd, J = 7.2, 16.4 Hz), 2.56 (1H, m), 1.81 (3H, t, J = 1.4 Hz), 1.43 (3H, s), 1.21 (3H, d, J = 7.5 Hz), 0.92 (9H, s), 0.10 (3H, s), 0.08 (3H, s); ¹³C NMR & 202.0 (0), 180.0 (0), 142.2 (1), 140.0 (0), 134.9 (0), 116.8 (0), 81.7 (1), 67.3 (1), 52.0 (1), 49.9 (1), 48.5 (1), 45.9 (0), 42.2 (1), 33.3 (2), 30.9 (2), 25.6 (4C, 3), 25.5 (3), 18.0 (0), 16.1 (3), -3.9 (3), -4.1 (3).

- 6 "Over-reduction" refers to formation of diols and/or 1,4-reduction. Double reduction of the Diels-Alder adduct of cyclopentadiene and 1,4-benzoquinone to the corresponding cis-diol by NaBH4/CeCl₃ was exploited synthetically by: Trost, B. M.; Tometzki, G. B. J. Org. Chem. 1988, 53, 915-917.
- 7 Molander, G. A. Chem. Rev. 1992, 92, 29-68, and references therein.

(Received in USA 4 June 1997; revised 11 July 1997; accepted 12 July 1997)