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Abetragt: Reductions of- cyclic ¢~¢dioncs by sodium borohydride proceed with markedly different 
regiodgmical prdeffi~aces with and without cerium(m) chloride. In the preface of Ca~ 3, reduetiom 
appear to be controlled by two phenomeva: the m b i l i t y  toward axial addition, in connnon with 
reaetivm without CgCI3, and acce~ibility for complexation by the Lewis acid. 
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We recently showed that 1,2-reductions of cyclic enediones by NaBI-t4 in methanol and Li(O-t-Bu)3A1H 

in THF follow the same stereo- and regioehemical course. 1,2 Reduction occurs by axial addition of hydride, and 

accessibility of the earbonyls then far outweighs electronic contributions in determining regioselectivity. The 

result is that reduction of the seemingly more hindered earbonyl can proceed stereospecifically in excellent yield. 

We report herein that in some instances regioselectivity can be effectively reversed by the use of NaBH4/CeCI3. 3 

The reaction of enedione 1 with NaBH4/CeCI3 in methanol at 0 *C proceeded 4,5 with a regioehemieal 

preference opposite to that of NaBH4 without the CeCI3, although over-reduction made this reaction synthetic- 

ally unattractive. 6 Nevertheless, in the presence of CeCI3, NaBH4 produced the monoalcohois 2 and 3 in a 3:1 

ratio, respectively, whereas without CeCI3 2 and 3 were produced in a 1:5 ratio, respectively. 1 
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On the other hand, the reduction of enedione 4 proceeded in the same regiochemical sense with or with- 

out CeCI3, yielding monoalcohol $ in very good yield (regioselectivity > 95%). When the controlling features 

of enediones 1 and 4 were combined in enedione 6, a single monoalcohol product 7 was produced stereo- and 

regiospecifieally with NaBH4/CeCI3. (NaBH4 reduction of 6 without CeCI3 gives 7 and another monoalco- 

hol. 1) Opposition of the controlling features led to mixtures of three monoaleohols, but with a modest 

prefereuce for products with regioehemistry opposite to that for NaBH4 alone. With NaBH4/CeCI3, enedione $ 
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provided monoalcohols 9, 10, and U in a 1.7:1:1 ratio, respectively, with a regioseleetivity of 73% in favor of 

reduction of the C-4 alcohol, but NaBH4 alone had given only 11.1 Also, a 1:1 mixture of isomers 12 gave 13, 

14, and 15 in a 1.7:1:1.2 ratio, respectively, and therefore 69% regioselectivity in favor of 13 and 14. 

Me 

Me 
O 
4 

Me Me 
0 

6 

O 

R I ~  Me 

R2 / " ~  H'~ f 
O 

8 RI = Me, R2-- Me 
12 RI-- H, R2= Me mM 

R 1 = Me, R 2 = H (1:1) 

0.70 equiv. 
NaBH4/CeC13 

MeOH, 0 *C 
Total 90% from 8 

Total 81% from 12 

MOH 
0.70 equiv. 

NaBH4/CeC~ Me - 

MeOH, 0 *C 
92% Me 

O 

5 

0.70 equiv. MOl OH 
NaBH4/CeCI3 M o ~  

MeOH, 0 *C 
98% Me Me 

0 

7 

R Me 0 Me 0 
I ~ M o  + R I ~ M O  

92 ~ "'-~-"Y" 92  ~ - Y  H /  H : OH OH 
9 R]=Me, R2=Me 10 RI=Me, R2=Me 

13 Rl=H,  R2=Meand 14 RI=H,  R2=Me and 
R 1 = Me, R2 = H (1:1) R 1 = Me, R2 = H (1:1) 

+ R ~ ~ M o  

O 

11 Rl = Me, R2 = Me 
15 R]=H, R2=Meand 

RI = Me, R2 = H (1:1) 

From the above reactions it is not clear how the addition of CeCI3 enhances the role of the vinylic 

methyl, relative to reductions without CeCI3 in which the electronic effect of this methyl was dominated by the 

steric influences from other regions of the substrate molecules. 1 It is known that the CeCI3 behaves as a Lewis 

acid and complexes with the carbonyl oxygen to enhance 1,2-reduction over 1,4-reduction. 7 Regioselectivity 

might reasonably be attributed to selective complexation, and the following examples suggest that this is 

determined by hindrance rather than a difference in basicity between the two carbonyis. In enedione 16, the 

region around the C-1 carbonyl is more encumbered than in 8 or 12, but the basicity of C-4 cannot be 

significantly different. However, monoreduction of 16 with NaBH4/CeCI3 was regiospecific, albeit with little 

stereoselectivity, giving epimers 17 and 18 in a 2.8:1 ratio. (A minor amount of over-reduced material was also 

obtained.) Similarly, reduction of the tetracyclic enedione 19 with NaBH4/CeCI3 yielded 20 and 21 (in a 1.5:1 
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ratio, but nevertheless with 100% regioselectivity) with no over-reduced product, whereas reduction at C-1 was 

the only reaction observed with NaBH4 alone. 1 
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Conjugate and diol-forming reductions were not important processes with NaBH4/CeCI3, except with 

ertedione 1. In general, by using approximately 0.7 molar equivalents of NaBH4, very good yields of 

monoalcohol were obtained. In spite of the poor stereoehemical control, which has been noted before in 

reductions with NaBI-I4/CeCI3, 7 the regioselectivity afforded by this reductive process may still make this a 

useful alternative to other methods. 
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